Monday, March 30, 2015

Central Banking: The Basics

1. Credit Fluctuations and Financial Crisis

Last post, we discussed the role of fluctuations in total credit extended to the value of production and also to the total money stock. When credit is expanded, this is typically indicative of an increase in the value of production. This can occur either through an increase in production itself, an increase in prices, or an increase in demand for cash balances which may lead to an increase in demand for credit assuming that prices do not immediately adjust to accommodate the change in demand for money. The relation between credit and money implies a relationship between aggregate demand and credit. When the volume of credit extended increases on net, this is equivalent to an increase in the money stock, and therefore an increase in aggregate demand (MV). Thus, changes in the credit stock, absent a change in demand for money, shifts the aggregate demand curve in the same direction. After a period where credit has been misallocated, something only discovered ex post, there must follow a contraction as the value of collateral adjusts to reflect underlying demands of the economy. While this process works to reallocated resources to their most highly value use, the fall in credit also precipitates a fall in income. Falling incomes encourages agents and firms to take a more conservative stance financially until they expect that the crisis is nearing an end. This tendency creates aggregate oscillations known as the business cycle. We will discuss the business cycle in later posts. For now it is sufficient that we recognize that the phenomenon exists.

When these oscillations in the volume of available money and credit grow extreme, banks that might otherwise be economically sustainable risk default. The same holds true for other businesses. In the worst case, these fluctuations may create a wave of insolvencies that turn a minor crisis into a financial pandemic. Nominal fluctuations begin to affect the structure of the real economy. This is what occurred in the recent crisis. Many large financial firms were holding bundles of AAA rated mortgage backed securities. The AAA rating hid from non-critical observers the risk contained in these securities. Before the crisis in 2007 and 2008, banks held these securities were able to acquire very high levels of leverage. The ratio of debt to cash on hand grew to dangerously high levels. When the value of these assets collapsed, leverage levels increased as many of these firms were on the brink of collapse. Assets that had served as money – mortgage backed securities – fell in price. This was equivalent to a drop in the broader money stock as it necessitated a contraction of credit in order for the system to stay solvent. In order to avoid collapse, the Federal Reserve provided the market with liquidity by buying up “toxic” assets, i.e., the overvalued mortgage backed securities. Ignoring the politics that were at issue, we observe that the Federal Reserve was, in an unorthodox manner, serving the role of lender of last resort.

2. The Central Bank and the Money Stock

The central bank’s primary means of policy implementation depends on its control of the money stock. This control provides it the ability to intervene within a market. There are 3 means by which a central bank typically intervenes.
a. Discount Rate 
The central bank lends money directly to other banks through the discount window. In the early days, this was the central bank’s primary means of intervention. It has come to play a smaller role in the modern environment. 
b. Open Market Operations 
This is a favorite tool of central banks. Open market operations is the general process in which central banks engage when they buy and sell debt on the open market. If the central bank purchases debt, it has increased the monetary base, usually with the expectation that this increase will promote credit creation. If the central bank sells, bonds, it diminishes the base money stock and, by so doing, discourages the creation of new credit. Most central bank policies imply an inflationary bias, so this latter case is less common. 
c. Reserve Requirements 
The central bank can influence the broader money stock by changing the proportion of commercial bank liabilities that are required to be held with the central bank. By increasing reserve requirements, the central bank contracts the total money stock. By decreasing reserve requirements, the central bank enables the expansion of the total money stock.
3. The Central Bank as the Lender of Last Resort

The lender of last resort role is probably the strongest justification for central bank management of the money stock. During a crisis, banks need liquidity. Under some banking regimes, private banks collectively established institutions that stabilized the banking system during crises (as we will see next post). The norm has been for governments to establish a central bank.

The central bank is responsible, not only for providing liquidity during a crisis, but also to manage the base money stock. This is of particular significance for the functioning of credit markets. If a bank or banks risks collapse, cannot acquire credit, and appears to be solvent, the central bank’s role is to provide temporary liquidity to the institution. This function provides stability to the system during periods of credit collapse.

a. Moral Hazard 
The lender of last resort role creates a problem of second-order: moral hazard. In a system where stability is provided privately, provision of liquidity is constrained by expectation of repayment. This expectation is formed by the creditor’s local knowledge of the bank receiving emergency funds. In the private system, this role is decentralized as major players within different banking systems (networks) play the role of lender of last resort. The implementation of a central bank degrades this local knowledge and distorts incentives. Banks with relatively high levels of risky assets might not receive credit under the private system. They are more likely to receive credit under a system of central banking as 1) politics plays a greater role in allocating credit and 2) private bankers and investors may form the expectation that the central bank will always provide them liquidity. This encourages private banks to extend more credit than they would otherwise.
4. Relative Prices and the Flow of Goods and Currency
a. Fixed Exchange Rates (Gold Flows) 
During the years of the gold standard, this role was fulfilled by adjusting the base money stock according to business conditions. This might lead to fluctuations in the reserve ratio as well as gold flows. Under this system, exchange rates could not adjust to bring international prices to parity. Instead, prices denominated in gold were brought into parity by arbitrageurs.

One part of this process is the price-specie-flow mechanism. Let us assume that the economy is in equilibrium. If the central bank increases the portion of the base money stock comprised of paper money absent a change in the gold stock, this will tend (though not always) to promote credit creation and increase prices within the nation. This leads to discrepancies between the prices of domestic goods and goods from abroad. The discrepancy in prices encourages gold to flow out of the country to other nations where prices are lower and goods are therefore cheaper. Domestic interest rates are also depressed, thus encouraging gold to leave the country. Likewise, a contraction of the paper money by the central bank will lead to a domestic deflation which encourages the flow of gold from foreign countries into the domestic economy.

In the long run, the price of any like goods tend to equalize. This gives rise to purchasing power parity. Traders can earn a profit by purchasing goods or claims to goods in a country where prices are relatively lower and selling them in countries where prices are relatively lower. This shifts demand away from the more expensive goods and toward the cheaper goods which diminishes the discrepancy in prices. This long-run tendency is the process on which the law of one price depends. Anywhere where there is a discrepancy in the price of goods represents a profit opportunity. Consequently, in a gold standard world, gold has only one international price, deviations from which are constrained (Samuelson 1980).
b. Floating Exchange Rates 
For the most part, central banks no longer hold gold. They hold currency and debt, both foreign and domestic, as the large share of their assets. The effects that operated under the gold standard still effect prices, but these changes tend to be swamped by swift changes in exchange rates. If a central bank increases the money stock, ceteris paribus, then we can expect that prices will tend to rise on average. The currency loses value. If the exchange rate of the currency adjusts before domestic prices, then there exists an arbitrage opportunity for investors who purchase these domestic goods and sell them abroad. Under the gold standard, fixed exchange rates led goods to flow into the country as prices rose. Relatively cheaper foreign goods would flow into the country engaged in inflation. With no fixed exchange rate, however, the flow of goods out of the country whose currency has devalued relative to other currencies is the consequence of inflation.

5. The Federal Funds Rate

In the United States, the Federal Reserve sets a target for the Federal Funds Rate. This is the rate at which banks lend to one another, often overnight. Since new money first comes into possession by banks that sell assets to the Fed, this rate is relatively responsive to changes in the money stock.

6. Types of U.S. Government Debt

The Federal Reserve usually expands money by buying government debt. This debt is divided into 3 categories
a. Treasury Bills 
This is comprised of debt that matures within one year. These represent the bulk of debt purchases by the Federal Reserve. 
b. Treasury Notes 
Treasury notes include debt that matures in 1 to 10 years. 
c. Treasury Bonds 
Treasury bonds mature in greater than 10 years.

Wednesday, March 25, 2015

Money and Credit: Origins, Instruments, and Dynamics

Banking

When money first arises, agents must find a way to economize on cash balances. Agents can hold on to commodities, but this is a risky practice. Commodity money may deteriorate or be lost or stolen. Theft was especially a problem for those making long trips through the countryside. Holding on to cash balances is costly. Early on, agents realize this. Those with enough wealth begin to keep their money with a trusted third party. Historically, when gold came into use as money, agents left their gold at a warehouse in exchange for a deposit slip. These deposit slips served a role as a medium of exchange. If the warehouse has multiple branches, the deposit slips might be exchanged at another branch, thus increasing the marketability of the slips by diminishing agents’ incentive to discount the them. These slips are part of a more general class of money known as fiduciary currency (the root of the word fiduciary comes from the Latin word for “faith”). These are promises to repay.
                
Eventually, the keepers of the warehouses realize that they can lend the money entrusted to them so long as depositors do not rush all at once to retrieve their commodity money. This is fractional reserve banking. Banks hold some portion of their reserves (the money lent to them) while lending the remainder. This allows cash to be employed when it would otherwise sit in reserve. For depositors, this diminishes the cost of holding cash balances. In a gold standard world, for example, instead of holding and exchanging in actual gold, agents can exchange deposit slips. Meanwhile, they earn interest on the money that they have temporarily relinquished to the bank. This creates a tendency for the total money stock, which in our example is the total gold plus the total amount of deposit slips to fluctuate due to changes in demand to hold currency. We measure the relative size of the total money supply by comparing the base money stock to the total amount of money in circulation.

MB= MT / MM
or
MM = MT / MB
               
Where:
MT = Total Money Stock (MB + Liquid Credit Instruments)
MB = Base Money
MM = Money Multiplier

The money multiplier is intimately related to the reserve ratio of a banking system. Collectively, banks form an aggregate reserve ratio. It is defined by the amount of currency they have on hand divided by their total liabilities. Monetary dynamics fall out of this identity. When banks extend credit on net, the reserve ratio drops. When banks contract credit on net, the ratio increases. When agents deposit currency on net, the ratio increases. When agents withdraw currency on net, the ratio falls (Hawtrey 1919).

We might also think of the reserve ratio as its inverse: the money multiplier. This represents the ratio of total currency to base currency. The ratio of currency to deposits plays an important role in this identity as it allows us to observe the effect of a change in currency or deposits on the money multiplier.
Mt = C + D
Mb = C + R
Mt/Mb = (C + D) / (C + R)
Mt/Mb = (C/D + 1) / (C/D + r)
Where:
Mt / Mb = Money Multiplier
C = Currency
D = Deposit 
*Other variables defined as above

Notice that the numerator is larger than the denominator as long as r < 1. This means that as C increases, the denominator grows at a faster rate than the numerator. The money multiplier falls under this scenario. Likewise, as the total stock of currency shrinks, the money multiplier grows. Similarly, as the amount of deposits increases, the denominator, C/D + r, falls at a faster rate than the numerator. The money multiplier increases. As deposits falls, the money multiplier falls.

Unspent Margin: Cash Balances, Money on Account, and Substituting for Available Credit Lines

Agents respond to the incentives of this relatively flexible system. We assume that agents economize on cash balances. That is, they decide to hold cash for several reasons. Agents receive income in discrete units, so they must build up reserves in preparation for periods where income has yet to be received. Agents also hold currency or deposit balances in order to hedge for risk. Last, agents deposit their currency in discrete quantities. (This was more important before the development of direct deposit and electronic quasi-monies.) Agents may economize on cash balances by leaving their money on deposit to collect interest. They may also choose to allot some wealth to long-term investments where it collects more interest than an ordinary demand deposit account. They may also choose to substitute an available credit line for balances of cash or deposits. By doing this, an agent may collect a higher yield from long-term investments while still having ample liquidity to deal with fluctuations in their own demand for money.

The unspent margin serves as analytical proxy for demand for money. First we must identify the unspent margin. “The unspent margin is equal to all the cash, whether in circulation or in the banks, plus the net interest bearing assets of the banks (Hawtrey 1919).” The unspent margin represents portfolio demand for money. In a world where credit influences the money stock, a net increase in loans by the banks will first have the effect of increasing the unspent margin. When credit is expanded without being exchanged for goods, the credit represents an increase in the money stock with an offsetting expenditure. Demand for money increases (velocity falls) as a result. A contraction of credit represent a fall in demand for money. Demand for money falls as agents relinquish cash to the bank and the bank fails to offset the decrease in liabilities. In either case, prices must adjust to in order to facilitate the exchange despite a change in the money stock.

It is from this pattern that Hawtrey made an observation concerning the relation between incomes and changes in credit.

Apart from this shuffling of debts, all the credit created is created for the purposes of being paid away in the form of profits, wages, salaries, interest, rents – in fact, to provide the incomes of all who contribute, by their services or their property, to the process of production, production being taken in the widest sense to include whatever produces value. It is for the expenses of production, in this wide sense, that people borrow, and it is of these payments that the expenses of production consist. So we reach the conclusion that an acceleration or retardation of the creation of credit means an equal increase or decrease in people’s incomes.


In the world that we have constructed thus far, exchange only occurs when both agents expect to profit. This implies an expectation of the lender that the borrower has or will earn the means to repay the loan at a later date. The borrower will typically produce goods or provide services in order to raise the income required for repayment. In a world of voluntary exchange, then, incomes rise and fall with increases and decreases of the credit stock as this reflects changes in the expected value of production.

Monday, March 23, 2015

The Nature and Role of the Interest Rate

What is Interest?

When an agent owns wealth, whether in the form of a commodity or currency, he or she may decide to temporarily relinquish control of his or her asset in exchange for a return whose value is dependent upon the length of time for which the asset is relinquished. The value of the return divided by the original investment – the value of that which was lent – represents the rate of return. The rate of return implies a time period over which investment occurs. Typically this period is one year. If the rate of return is 10%, an agent who invests $100 or an asset worth $100 in year one receives a value of $110 in year two. The rate of return in this sense is a rate of return for an individual investment. We might weight the returns from an agent’s investments to calculate an average rate of return for an individual agent or we might attempt to calculate the rate of return for the market as a whole. The latter of these is known as the market rate of return.
                
When working with the rate of return, either for analysis of the past or estimations of the future, we use the equation for present-value. In its simplest form, we compound over one year (period):

PV = FV/(1 + r)

Where:
PV = Present Value
FV = Future Value
r = Interest Rate

We can use this equation to estimate the rate of return for any investment, monetary or otherwise. Alchian and Allen (1983, 108) show us that we might calculate the rate of return using physical assets. This is known as an own rate of interest. (For a discussion of own rates see this post from David Glasner). Imagine that we have 3 pound of grapes. That one pound of grapes might be sold immediately or they might be processed for a year and sold as a bottle of wine. Let us assume that, aside from time, this process is costless. In this case, the present value of the grapes is equal to the price they would sell for on the market. The future value is equal to the price that a bottle of wine is expected to fetch one year from the present. If the bottle of wine is expected to sell for $1.10 and the three pounds of grapes is expected to sell for $1.00, then we again have a case where the expected rate of return is 10%:

1 + re = $1.10/$1.00
1 + re = 1.1
re = .1

This calculation can also be performed ex post in order to compare the actual return to the return on another investment.

Recall that agents achieve profit by transforming the present state of the world into one that they prefer more greatly. Interest helps to expand this definition of profit. We can now imagine not only a transformation of the present state, but so also the exchange of expected states in the future. If an agent comes to realize a return that is less the market rate of return, she may choose to invest in assets whose returns she expects to at least match the market rate of return. This exercise in arbitrage is what drives the market toward an equilibrium state so long as expectations are convergent; that is, so long as agents’ expectations about the present state of reality and its future unfolding tend to cohere with one another. This is not an unreasonable assumption as those who fail to predict the future state of the market will tend to be out-competed by those who do. In the short run, extreme, even systematically destabilizing outcomes may occur. We should beware against ignoring context and process by turning belief in market efficiency into a tautology. (For more on expectations, see Koppl 2002; Koppl and Butos 1993)

The rate of interest emerges as a result of agents’ time-preferences. Given one’s context, an agent reflects time preference in his or her decisions to refrain from consumption or not. If an agent refrains from consumption and invests his or her wealth for a period of time, that agent increases the availability of loanable funds. Assuming normal conditions – i.e., the future is expected to look mostly like today – a typical agent demonstrates positive time preference. He prefers having goods in the present to having the same goods in the future. Absent other influences, this results in a positive rate of interest. It is possible that markets might arrive at a negative rate of interest, but this categorically cannot be the result of an inversion of time-preference where agents prefer a state in the future to an otherwise identical state in the present. This positive time preference leads agents to invest so long as they receive a positive rate of interest.

The other, secondary determinate of the interest rate is the productive sector. If agents are lending their wealth to other agents with expectation of a certain rate of return, then agents who are borrowing expect either to earn higher rate of return. If this expectation is incorrect, the borrower will incur a loss, and in the worst case, default. For now we deal with the first case. Time preference is reflected by the supply of loanable funds, investment opportunities determine the demand for loanable funds. If an increasing number of agents expect that rate of return in the market will be greater than the interest rate, the demand for loanable funds will increase (See Figure 1). The rate will tend to rise until agents, in aggregate, no longer expect a rate of return higher than the interest rate. Likewise, the interest rate will fall if agents, in aggregate, expect that the rate of return will be less than the market rate of interest. (This analysis may be further complicated by differing expectations for a variety of time horizons. For simplicity, I leave this case out.)

























Figure 1

Natural Rate of Interest

The interest rate plays a significant role in coordinating investment across time. Of particular concern in the natural rate. Wicksell explains,

There is a certain rate of interest on loans which is neutral in respect to commodity prices, and tends neither to raise nor to lower them. This is necessarily the same as the rate of interest which would be determined by supply and demand if no use were made of money and all lending were effected in the form of real capital goods. It comes to much the same thing to describe it as the current value of the natural rate of interest on capital. ([1898] 1936, 102)

The natural rate of interest is the rate of interest that would exist absent nominal factor such as fluctuations in the money stock or fluctuations in demand for money. The nominal rate of interest is thought to fluctuate within proximity of the natural rate and is ultimately bounded by the natural rate. In the long run, the natural rate constrains the viability of particular investments, although in the short-run profits might be made from investments that are unsustainable. If a tendency arises for unsustainable investment projects to receive funds, this will eventually be checked by liquidity constraints. A rising interest rate thus reveals this problem and forces funds to be allocated away from those projects.

Real and Nominal Rates

Interest rates are observed in nominal form. This means that the observed rate of interest can, and typically does, deviate from the natural rate, defined in terms of a real rate. In equilibrium, meaning all exchanges have been made and under conditions where perception and expectations cohere with objective reality, the observed rate is equal to the sum of the real rate and the inflation rate. This is known as the Fisher Equation

i = r + π

                Where:
                                i = Nominal (Observed) Interest Rate
                                r = Real Interest Rate
                                π = Inflation Rate


Through a process of trial and error, agent action factors the average rate of inflation into the money rate of interest. Within this construct, the money rate of interest converges with the natural rate of interest.

To sum, the interest rate is emerges as the result of positive time preference. Individuals value present goods over future goods. The interest rate tells us by how much agents, on average, these agents prefer the future to the present. A secondary factor of influence over the interest rate is the rate of return on investments in the market. If opportunities for profitable investment, in terms of dollar value, are expected to exceed the rate of return, this pushes the rate of interest upward. Likewise, if there is a general expectation that the value of investment opportunities are shrinking, this will push down the rate of interest. In the long run, the interest rate will tend to reflect the real return on capital. Nominal factors such as changes in demand for money and changes in the available money stock tend to produce short-run deviations away from the natural rate. These fluctuations tend to be limited by liquidity restraints and are mitigated by a short-run rise in the interest rate. In the long run, inflation will be factored into the observed rate such that observed rate of interest is equal to the sum real rate and the nominal rate of interest. Finally, the reader should be aware that this analysis occurs within a static framework and ignores complications that arise due to destabilizing events such as herding, distortions from Big Players, political, economic, and/or natural disasters, etc... These additional sorts of details require a careful study of history and the use of simulation to further our understanding.

Tuesday, March 3, 2015

Say's Principle and Macroeconomic Analysis

In his 1936 treatise, Keynes formulated Say’s Law as proposing that “supply creates its own demand.” It is not clear exactly what Keynes meant by this. The statement implies an assumption of equilibrium where all excess demands are zero. That is, if supply creates its own demand, then quantity demanded of a good and the quantity supplied must be equal.  This is at worst a misrepresentation of Say’s Identity and at best an incoherent statement that appeared in one of the most popular economics treatises in history.

What is Say’s Law and why does it matter? In A Treatise on Political Economy, Say argues
A man who applies his labour to the investing of objects with value by the creation of utility of some sort, can not expect such a value to be appreciated and paid for, unless where other men have the means of purchasing it. Now, of what means do these consist? Of other values of other products, likewise the fruits of industry, capital, and land. Which leads us to a conclusion that may at first sight appear paradoxical, namely, that it is production which opens a demand for products.
Ultimately, goods must pay for goods. If an agent wishes to purchase a product, he or she must either exchange another good directly for the desired good or else acquire by exchange money to purchase the item. Confusion arises when money must be integrated into the framework. Unfortunately, Say does not do a good job of explaining the significance of money within this schema.

Thus, to say that sales are dull owing to the scarcity of money, is to mistake the means for the cause; an error that proceeds from the circumstance, that almost all produce is in the first instance exchanged for money, before it is ultimately converted into other produce: and the commodity, which recurs so repeatedly in use, appears to vulgar apprehensions the most important of commodities, and the end object of all transactions, whereas it is only the medium. Sales cannot be said to be dull because money is scarce, but because other products are so. Should the increase of traffic require more money to facilitate it, the want is easily supplied, and is a strong indication of prosperity – a proof that a great abundance off values has been created, which it is wished to exchange for other values.

Say’s description implies that he understands that there can be an excess demand for money that raises money's price. That increase in price will encourage an increase in the available money stock. Having brushed off the problem of insufficient demand by relying on an invisible-hand process, Say give a less than satisfactory supply-side argument for explaining general gluts.

It is because the production of some commodities has declined, that other commodities are superabundant. To use a more hackneyed phrase, people have bought less, because they have made less profit; and they made less profit for one or two causes; either they have found difficulties in the employment of their productive means, or these means have themselves been deficient.

Say describes here a misallocation of resources that only adjustment of price, and subsequently, of the capital structure can fix. It is possible however, that the processes that coordinate market activity might be interrupted by extreme swings in demand for money. It is this problem for which Leijonhufvud and Clower’s extension of Say’s Law as “Say’s Principle” (they refer to it as SP) provides a clear explanation.

Leijonhufvud and Clower describe Say’s Principle first in terms of individual agents. The core of their claim goes that “the net value of an individual’s planned trades is identically zero.” Individual agents make decisions concerning the allocation of their money. An agent may decide to spend all available money on goods and hold no cash on hand or he may decide to withhold some amount of money for safe-keeping. In the latter case, the agent has a positive portfolio demand for money. Algebraically, the authors represent this elementary budget constraint in a system of exchange where such a constraint is implied by secure property rights:

               Pxdx + pydy + dm– sm,0 = 0

In order for an individual's plans to be coherent, planned expenditures plus planned holdings of money (portfolio demand) must equal the stock of money available to the agent. The authors explain further in terms of common interpretations,

‘No one plans to supply anything of value without also planning some use for the proceeds from the sale, which may include simply planning to hold money until a later decision is made to purchase other commodities.’ This statement is correct and sensible.”

‘Confronted with given prices, each transactor must plan to supply commodities of sufficient value to finance all his planned net demands.’ This statement is also correct.

If you have not intuited this by now, Say’s Principle is simply an observation of agent action given a budget constraint.

When money is not included as the “mth commodity”, it is possible that excess supplies of goods can exist. However, when money is included we find that all excess supplies are equally offset by excess demands for goods. This is of special significance if one is to understand macroeconomic fluctuations. Distortionary representations of Say’s Principle connect the identity to an equilibrium assumption. This seems to be what Keynes was implying. Say’s Principle does not imply equilibrium absent a process to correct expectations. SP is an observation. Movement toward equilibrium requires some minimum threshold of convergent expectations amongst the population of agents as well as some combination of flexible prices and an endogenous money stock.

Money is different from all other goods in that it comprises one side of every monetary exchange. For this reason, we may separate economic goods into two categories for the sake of analysis. There is 1) money and then there are 2) all other goods. The value of goods in the second category are enumerated in a given currency unit. An excess supply of any good occurs when agents plan, in aggregate, to purchase less of the commodity than is available at a given price. This leads, by definition, to an excess demand for the “mth” good, money, meaning that at given the current constellation of prices, agents demand more money than is available. This will tend to push the price of money – the amount of goods that money exchanges for – upward and, conversely, the prices of commodities downward. This does not mean that the price of all commodities will necessarily fall, but that there will be deflationary pressure as the real stock of money (M/P) is others unable to facilitate exchange of goods until either prices have fallen or the nominal money stock (just M) rises. Until the problem is corrected, there will be a fall in output and employment of both labor.

We can illustrate Say’s principle with graphs of the money stock and of aggregate supply and demand. Those of you reading last week should recognize these graphs.



This represents an economy where agents have elected to increase the nominal value of their dollar holdings. Before prices adjust to reflect this change, there will be 1) and excess demand for money and 2) an excess supply of goods. Not enough money exists to facilitate exchange until prices drop. Eventually, prices must drop in order to clear available inventories. If the general fall in prices takes an extended period of time to occur, then there will be a depression: an extended fall in real output. This comes with an increase in unemployment and a fall in living standards for those agents not prepared for the depression.
   
Two solutions to this problem have been discussed. Either prices can fall to alleviate growing inventories or the money stock can increase. This has policy implications. 1) A central bank can attempt to alleviate, either in whole or in part, fluctuations in demand for money. The most popular formulation of this proposal is that the central bank should attempt to stabilize MV by adjusting M to offset changes in V. Leijonhufvud and Clower note some historical skepticism about this approach:

. . . Its use raises other issues. To whom is ‘the engine of inflation’ to be entrusted? What limits to that party’s discretionary use of the throttle would it be advisable to impose? . . . Reliance on the automatic solution, in this [classical] view, is argued to be the lesser of two evils.

Perhaps a better solution to this problem is to enact policies that enable the money stock to automatically fluctuate according to changes in demand for it. This might include the removal, or at least minimization, of barriers to liquidity that discourage asset owners from converting those assets into cash (i.e., the capital gains tax and legal restrictions applied to particular classes of assets). Another significant element in promoting a robust economy is the facilitation of expectation formation in regard to public policy. Government agencies are “Big Players” whose plans and actions are considered by agents in the formation of their own expectations (Koppl 2002). If “Big Players” act unpredictably, agents will be less able to coordinate. If these “Big Players” are unable to accommodate this need due to the nature of the political process, then there may be a case for a shrinking of the scope of influence for these government agencies. Of course, this is not to deny that it is possible that changes in government structure might also accommodate this need, but this is even more difficult of a task to accomplish.

I leave you with Say’s perspective concerning this problem.


. . . Wherever , by reason of the blunders of the nation or its government, production is stationary, or does not keep pace with consumption, the demand gradually declines, the value of the product is less than the charges of its production; no productive exertion is properly rewarded; profits and wages decrease; the employment of capital becomes less advantageous and more hazardous; it is consumed piecemeal, not through extravagance, but through necessity, and because the sources of profit are dried up. The laboring classes experience a want of work; families before in tolerable circumstances, are more cramped and confined; and those before in difficulties are left altogether destitute. Depopulation, misery, and returning barbarism, occupy the place of abundance and happiness.