1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
| from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pandas as pd
from matplotlib.backends.backend_pdf import PdfPages
files = 640
ticks = 15000
run_period = []
#np.empty((ticks))
num_x = 8
num_y = 8
runs_per_setting = 10
for j in range(0, ticks):
run_period.insert(j, j + 1)
run_period = pd.Series(run_period)
def prepare_lists(files):
# # number of elements recorded in csv by netlogo
num_categories = 30
# # number of elements created using data from netlogo
additional_categories = 16
total_categories = num_categories + additional_categories
runs = pd.Series([np.arange(files)])
names = pd.Series(['sugar',
'water',
'mean_price',
'price_variance',
'population',
'basic_only',
'basic_herder',
'basic_arbitrageur',
'basic_herder_arbitrageur',
'switcher_only',
'switcher_herder',
'switcher_arbitrageur',
'switcher_herder_arbitrageur',
'percent_basic',
'percent_arbitrageur',
'percent_herder',
'percent_switcher',
'basic_only_wealth',
'basic_herder_wealth',
'basic_arbitrageur_wealth',
'basic_herder_arbitrageur_wealth',
'switcher_only_wealth',
'switcher_herder_wealth',
'switcher_arbitrageur_wealth',
'switcher_herder_arbitrageur_wealth',
'sugar_flow',
'water_flow',
'distance_from_equilibrium_price',
'fifty_period_RAP',
'mean_rate_of_price_change'])
names_dict = {'sugar': [np.arange(ticks)],
'water': [np.arange(ticks)],
'mean_price': [np.arange(ticks)],
'price_variance': [np.arange(ticks)],
'population': [np.arange(ticks)],
'basic_only': [np.arange(ticks)],
'basic_herder': [np.arange(ticks)],
'basic_arbitrageur': [np.arange(ticks)],
'basic_herder_arbitrageur': [np.arange(ticks)],
'switcher_only': [np.arange(ticks)],
'switcher_herder': [np.arange(ticks)],
'switcher_arbitrageur': [np.arange(ticks)],
'switcher_herder_arbitrageur': [np.arange(ticks)],
'percent_basic': [np.arange(ticks)],
'percent_arbitrageur': [np.arange(ticks)],
'percent_herder': [np.arange(ticks)],
'percent_switcher': [np.arange(ticks)],
'basic_only_wealth': [np.arange(ticks)],
'basic_herder_wealth': [np.arange(ticks)],
'basic_arbitrageur_wealth': [np.arange(ticks)],
'basic_herder_arbitrageur_wealth': [np.arange(ticks)],
'switcher_only_wealth': [np.arange(ticks)],
'switcher_herder_wealth': [np.arange(ticks)],
'switcher_arbitrageur_wealth': [np.arange(ticks)],
'switcher_herder_arbitrageur_wealth': [np.arange(ticks)],
'sugar_flow': [np.arange(ticks)],
'water_flow': [np.arange(ticks)],
'distance_from_equilibrium_price': [np.arange(ticks)],
'fifty_period_RAP': [np.arange(ticks)],
# Categories to be generated within python
'basic_only_wealth_per_capita': [np.arange(ticks)],
'basic_herder_wealth_per_capita': [np.arange(ticks)],
'basic_arbitrageur_wealth_per_capita': [np.arange(ticks)],
'basic_herder_arbitrageur_wealth_per_capita': [np.arange(ticks)],
'switcher_only_wealth_per_capita': [np.arange(ticks)],
'switcher_herder_wealth_per_capita': [np.arange(ticks)],
'switcher_arbitrageur_wealth_per_capita': [np.arange(ticks)],
'switcher_herder_arbitrageur_wealth_per_capita': [np.arange(ticks)],
'percent_basic_only': [np.arange(ticks)],
'percent_basic_herder': [np.arange(ticks)],
'percent_basic_arbitraguer': [np.arange(ticks)],
'percent_basic_herder_arbitraguer': [np.arange(ticks)],
'percent_switcher_only': [np.arange(ticks)],
'percent_switcher_herder': [np.arange(ticks)],
'percent_switcher_arbitraguer': [np.arange(ticks)],
'percent_switcher_herder_arbitraguer': [np.arange(ticks)],
}
for i in range(1, files + 1):
filename = str(i) + 'sugarscapeLocalTradeBasics.csv'
runs[i] = pd.read_csv(filename, names = names)
# , sep = None,engine='python')
# Add categories generated from data manipulation
runs[i]['basic_only_wealth_per_capita'] = runs[i]['basic_only_wealth'] / runs[i]['basic_only']
runs[i]['basic_herder_wealth_per_capita'] = runs[i]['basic_herder_wealth'] / runs[i]['basic_herder']
runs[i]['basic_arbitrageur_wealth_per_capita'] = runs[i]['basic_arbitrageur_wealth'] / runs[i]['basic_arbitrageur']
runs[i]['basic_herder_arbitrageur_wealth_per_capita'] = runs[i]['basic_herder_arbitrageur_wealth'] / runs[i]['basic_herder_arbitrageur']
runs[i]['switcher_only_wealth_per_capita'] = runs[i]['switcher_only_wealth'] / runs[i]['switcher_only']
runs[i]['switcher_herder_wealth_per_capita'] = runs[i]['switcher_herder_wealth'] / runs[i]['switcher_herder']
runs[i]['switcher_arbitrageur_wealth_per_capita'] = runs[i]['switcher_arbitrageur_wealth'] / runs[i]['switcher_arbitrageur']
runs[i]['switcher_herder_arbitrageur_wealth_per_capita'] = runs[i]['switcher_herder_arbitrageur_wealth'] / runs[i]['switcher_herder_arbitrageur']
runs[i]['percent_basic_only'] = runs[i]['basic_only'] / runs[i]['population']
runs[i]['percent_basic_herder'] = runs[i]['basic_herder'] / runs[i]['population']
runs[i]['percent_basic_arbitrageur'] = runs[i]['basic_arbitrageur'] / runs[i]['population']
runs[i]['percent_basic_herder_arbitrageur'] = runs[i]['basic_herder_arbitrageur'] / runs[i]['population']
runs[i]['percent_switcher_only'] = runs[i]['switcher_only'] / runs[i]['population']
runs[i]['percent_switcher_herder'] = runs[i]['switcher_herder'] / runs[i]['population']
runs[i]['percent_switcher_arbitrageur'] = runs[i]['switcher_arbitrageur'] / runs[i]['population']
runs[i]['percent_switcher_herder_arbitrageur'] = runs[i]['switcher_herder_arbitrageur'] / runs[i]['population']
# Keep track of run # processesed
print(i)
# will be used to record mean parameter values for particular settings
# across the behavior space
mean_values = pd.DataFrame(columns = [np.arange(num_x)], index = [np.arange(num_y)])
# run_name = np.empty((num_x, num_y, runs_per_setting), dtype = np.dtype((str,32)))
for x in range(0,num_x):
for y in range(0,num_y):
mean_values[x][y] = pd.DataFrame(names_dict)
for x in range(0,num_x):
for y in range(0,num_y ):
for z in range(0,runs_per_setting):
# Add 1 because file index starts at 1
# run_name[x][y][z] = 'Cs = ' + str(.5 + x * .025) + ' Cw = ' + str(.5 + y * .025) + ' run ' + str(z + 1) + ' of ' + str(runs_per_setting)
run_number = x * num_y * runs_per_setting + y * runs_per_setting + z + 1
mean_values[x][y] = mean_values[x][y].add(runs[run_number], fill_value=0)
print("processing: " + str(run_number))
mean_values = mean_values / runs_per_setting
print_behavior_space_representation(mean_values)
##############################################################################################
##############################################################################################
def initialize_image(num_x, num_y):
image = []
for i in range(num_y):
x_colors = []
for j in range(num_x):
x_colors.append(0)
image.append(x_colors)
return image
def color_points(title, filename, category, mean_values,pp, tick, min_val, max_val):
image = initialize_image(num_x, num_y)
for i in range(0, num_x):
for j in range(0, num_y):
image[i][j] = mean_values[i][j].iloc[tick][category]
print(image)
plt.imshow(image, origin='lower', extent=(.45, .8, .45, .8),
cmap=cm.Greys_r, interpolation = 'nearest')
plt.colorbar()
plt.clim(min_val, max_val)
plt.xlabel('Water Consumption Rate')
plt.ylabel('Sugar Consumption Rate')
plt.title(title + " Period " + str(tick + 1))
fig = plt.gcf()
plt.show()
plt.draw()
pp.savefig(fig)
def print_behavior_space_representation(data):
interval = 500
pp = PdfPages('population_local_basic_tick_15000.pdf')
for q in range(999, ticks, interval):
color_points("Population\nLocal Trade Basics","Population Local Trade Basics", "population", data, pp, q,250,1800)
plt.close('all')
pp.close()
pp = PdfPages('PV_local_basic_tick_15000.pdf')
for q in range(999, ticks, interval):
color_points("Price Variance\nLocal Trade Basics", "Price Variance Local Trade Basics", "price_variance", data, pp, q,0 , 8)
plt.close('all')
pp.close()
pp = PdfPages('MP_local_basic_tick_15000.pdf')
for q in range(999, ticks, interval):
color_points("Mean Price (Logged)\nLocal Trade Basics","Mean Price Local Trade Basics", "mean_price", data, pp, q, -1, 8)
plt.close('all')
pp.close()
pp = PdfPages('DfEP_local_basic_tick_15000.pdf')
for q in range(999, ticks, interval):
color_points("Distance From Predicted Equilibrium Price\nLocal Trade Basics", "Distance From Predicted Equilibrium Price Local Trade Basics", "distance_from_equilibrium_price", data, pp, q, -1, 8)
plt.close('all')
pp.close()
pp = PdfPages('FPAMP_local_basic_tick_15000.pdf')
for q in range(999, ticks, interval):
color_points("Fifty Period Average Moving Price (Logged) \nLocal Trade Basics", "Fifty Period Average Moving Price (Logged) Local Trade Basics", "fifty_period_RAP", data, pp, q, -1, 8)
plt.close('all')
pp.close()
pp = PdfPages('MRoPC_local_basic_tick_15000.pdf')
for q in range(999, ticks, interval):
color_points("Mean Rate of Price Change\nLocal Trade Basics", "Mean Rate of Price Change Local Trade Basics", "mean_rate_of_price_change", data, pp, q, 0, 1)
plt.close('all')
pp.close()
pp = PdfPages('PB_local_basic_tick_15000.pdf')
for q in range(999, ticks, interval):
color_points("Percent Basic \nLocal Trade Basics", "Percent Basic Local Trade Basics", "percent_basic", data, pp, q, 0, 1)
plt.close('all')
pp.close()
pp = PdfPages('WPC_local_basic_tick_15000.pdf')
for q in range(999, ticks, interval):
color_points("Wealth Per Capita \nLocal Trade Basics", "Wealth Per Capita Local Trade Basics", "basic_only_wealth_per_capita", data, pp, q, 50, 400)
plt.close('all')
pp.close()
if __name__ == '__main__':
np.save('data', prepare_lists(files))
np.load('data.npy')
|